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The expectation value of the steady-state velocity acquired by an electron interacting with the longi-
tudinal, optical phonons of a polar crystal in a finite electric field is analyzed quantum mechanically for
arbitrary coupling strength, field strength, and temperature. The rate of loss of momentum by an electron
drifting through the crystal in the applied field is expressed in a form in which the lattice coordinates (the
phonons) have been eliminated exactly by path-integral methods. This expression is then evaluated by a
path-integral approach similar to that used to calculate the impedance of electrons in polar crystals. We
present numerical calculations of field (loss of energy per unit distance) versus velocity for three coupling
strengths using the Fréhlich polaron model. In a single curve, all the expected phenomena appear, including
a threshold field for producing hot electrons and a decreasing rate of energy loss with velocity for very fast
electrons. Using only the experimentally measured values of the reststrahlen energy and the static and optical
dielectric constants, we find an energy loss of 0.025 eV/A for electrons near the threshold in Al;O3, which
compares favorably with the experimental value of about 0.03 eV/A. We conclude that optical-phonon
scattering can indeed produce the high rate of energy loss that is present in tunnel-cathode structures.

I. INTRODUCTION

NUMBER of years ago experimenters studying

the operation of cold-cathode, tunnel-emission
devices were surprised to find that electrons could lose
as much as 0.01 eV /A to 0.06 eV/A to the insulator part
of the device.l? Theorists were hard-pressed to explain
such results. Acoustic-phonon scattering can contribute
at most 10~¢ eV/A; the band gap of the material
(10 eV) is too large for pair production. As electrons
are coupled moderately strongly to the longitudinal
optical modes of the lattice, it was suggested that
optical-phonon scattering might be important. Perform-
ing a meaningful calculation, however, was hindered be-
cause the standard perturbation approaches, involving
mean-free-path or mean-free-time parameters and the
Boltzmann equation assuming independent collisions,
are not applicable. For example, the energy of an optical
phonon is typically 0.05-0.1 eV for these materials. This
fact would require a mean free path for phonon emission
of only 3 and 4 A and a mean free time of about 2)X 101
sec in terms of jone-phonon processes. These parameters
are even less at temperatures where absorption is also
important. Either quantity emphasizes that quantum
interferences between the emitted phonons are impor-
tant. This immediately precludes the assumption of
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1 For a review and assimilation of the experimental results see
R. M. Handy, J. Appl. Phys. 37, 4620 (1966). See also E. D.
Savoye and D. E. Anderson, J. Appl. Phys. 38, 3245 (1967).

2 Specifically, when electric fields of about 0.01-0.06 eV/A
are applied to wide band-gap metal oxides (e.g., Al;Os), electrons,
injected into the bottom of the conduction band by tunneling
from near the Fermi level of the adjacent metal contact, are able
to lose to the crystal a sizable fraction of the kinetic energy they
acquire by falling through the impressed potential. This is mea-
sured by allowing the electrons to pass through a very thin metal
contact on the opposite side and emerge into vacuum. Their
energies are determined by using standard retarding field tech-
niques. For Al:Os, 0.03 eV/A is a commonly obtained value.

independent phonon emissions and, consequently, the
use of Fermi’s golden rule for the rate of emission.
Electric fields of the size used in the experiments can-
not be treated as perturbations, and the velocity of the
electrons is not sufficiently large that the energy loss in
any one collision is negligible. Thus, seeking to deter-
mine whether or not optical-phonon scattering can
account for the very large rate of loss of electron energy
observed, we at once face treating a transport problem
in which an electron is simultaneously rapidly acquiring
kinetic energy from a static electric field and rapidly
losing that energy to a dissipative medium, a situation
not assailable by existing perturbation or Boltzmann
techniques.

Our approach is physical and direct. The simplest
question we can ask is this: Given an applied field in the
crystal, what is the expectation value of the velocity of
the electron? We may start the electron from rest, in
which case we ask for the expectation velocity after the
steady state is reached. As we increase the field, we ex-
pect to reach a point whére the electron’s acceleration
can no longer be controlled by the lattice. Above this
threshold the electron is able to drift to ever increasing
velocities unless other loss mechanisms with higher
thresholds such as ionization are introduced. We carried
out such a calculation?® by extending to finite fields path-
integral methods,**® which have yielded such success in
calculating the energy, effective mass, and impedance
of the polaron for arbitrary coupling strength and tem-
perature. The calculation was excessively lengthy and
involved; however, it provided the key to the approach
used here, which gives the same result by a much
simpler and more physical method.

Under steady-state conditions the electron is, on the

3 K. K. Thornber, PhD thesis, Part II, 1966 (unpublished).
The approach given here is also contained in this thesis.

4R. P. Feynman, Phys. Rev. 97, 660 (1955), hereafter referred
toas L.

5 R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M.
Platzman, Phys. Rev. 127, 1004 (1962), hereafter referred to as
FHIP.
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average, acquiring kinetic energy by falling through the
impressed potential, the energy per unit distance being
just the applied field, and losing this energy by a net
emission of optical phonons. Being a steady-state
situation, the expectation value of the rate of change
of electron momentum is zero. Therefore, we begin
the calculation with the quantum-mechanical expres-
sion for the rate of change of electron momentum,
and then determine the expectation value of each oper-
ator in the equation. The quantity (p) is zero, and we
are left with an equation which balances the applied
field, or rate of increase of electron momentum, against
the rate of loss of momentum due to lattice scattering.
This result is an explicit dependence for the field in
terms of the steady-state velocity of the electron. The
key feature then is not to ask what velocity is obtained
for a given field. Rather, for a specific velocity, what
field is necessary to maintain that velocity, or more
generally, what energy is lost per unit distance by an
electron whose expectation velocity is specified.

We assume that only the (polar) optical modes inter-
act with the electron and that they do so in a very simple
way. Since we are primarily interested in the effect of
the phonon scattering, it is assumed that in the unde-
formed lattice the electron would move as a free particle
with possibly an altered mass. No limit is placed on the
strength of the coupling or the electric field, and the
temperature is arbitrary. If the applied electric field is
sufficiently strong to alter the phonon dispersion rela-
tion or the coupling, it is the altered values which must
be used in our calculations.

Starting with the operator equation for the rate of
change of momentum, we eliminate the lattice co-
ordinates exactly using the path-integral method, and
then evaluate this expression by an approximate ap-
proach similar to that used in I and FHIP. In FHIP
the ac impedance of electrons in a polar crystal is deter-
mined for arbitrary coupling strength, temperature, and
frequency of the small, oscillatory, applied electric
field. Here we are interested in the zero-frequency but
finite applied field situation.

The nonlinearities inherent in this transport problem
emerge in a striking manner. Calculating energy loss
per unit distance, which is the applied field for velocities
below threshold and energy loss in the absence of an
applied field for velocities above threshold, we obtain
with increasing velocity first the strongly temperature-
dependent, low-field mobility, as found by FHIP in the
limit of zero frequency of the applied field. Then, for
initial lattice temperatures below the reststrahlen
energy, there is a rapid increase in the rate of energy
loss as the electron’s translational kinetic energy ap-
proaches this optical-phonon energy. This is followed
by a temperature-independent threshold, or maximum
loss of energy with distance, and finally a subsequent
temperature-independent decrease as In(v) /v? for veloci-
ties well above threshold. For initial lattice tempera-
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tures above the optical-phonon energy, the low-field
linear region passes smoothly through a broad temper-
ature-dependent threshold which portrays the domi-
nance of scattering from existing optical phonons. For
very large velocities, the weak coupling limit of the
solution gives the expected perturbation result. Thus, in
a single family of field-velocity curves with tempera-
ture as the parameter, all the expected physical phe-
nomena appear. Agreement with experiment is obtained
for phenomena occurring the the vicinity of the thres-
hold. We conclude that optical-phonon scattering can
produce the large loss of electron energy observed in
tunnel-emission devices.

II. FORMULATION OF TRANSPORT PROBLEM
IN TERMS OF ELECTRON
COORDINATES ALONE

If an electron is drawn through a crystal by an
externally applied electric field, its momentum is
changed by both the field and by the emission and ab-
sorption of phonons. Using operators, we may express
this by a simple conservation equation

p=i[Hpl/#, )

where H is the Hamiltonian for the system and p is the
momentum operator of the electron.® The Hamiltonian
is the sum of four terms—the kinetic energy of the
electron and the Hamiltonian of the lattice, which
commute with p, and the interaction of the electron
with the lattice V,o,....,0,) and with the applied field
—F-x, where F represents the applied force. Inserting
into (1) gives

p=F—i[p,V]/4%. @

If we now evaluate the expectation value of both sides
of (2), we obtain

F=([p,V])/h=(V:V), 3)

because in the steady state (p)=0. This equation
expresses the equality between the rate of increase and
rate of decrease of electron momentum under steady-
state conditions.

To calculate (ViV), we must determine the density
matrix p, of the electron-lattice system in the steady
state. To do so, we formulate the problem by specifying
that at some time ¢=# we inject the electron into the
lattice, which itself is in thermal equilibrium in the
presence of the applied electric field, and then wait until
the steady state is reached, that is, until {(p)=0. Thus to
within a normalizing constant p,=exp(—BH1astico),
B=1/kT. For t>1, we solve

dp
= [H,p]/h ) (4)

a¢
¢ Equation (1) is valid whether or not A is a function of time;
however, to yield exact results it must be sandwiched between
exact wave functions (or used with an exact density matrix) of A,
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obtaining”8

t i
pt=exp<—i/ Hm?s/h)pt1 exp<i/ Hsr’ds'/h) G
t1 i1

This gives us the density matrix for £>#, a nonequilib-
rium situation. The (V,V) is now given by

(VeV ) =Tr[(VxV)pc], (6)

and to obtain the steady state, we will let /— .

The model Hamiltonian preserving the essential
physics of the problem of an electron interacting with
the vibrational modes of the crystal in an electric field is

H=p2/2m—Fx+Z hwkakfak
k

+ V123 (Craxe™ *+CiFate %), (7)
k
Here ai' and ay are the creation and annihilation oper-
ators for phonons of momentum k, frequency wg,
coupled to the electron via the coupling coefficient Cy;
p is the momentum of the electron, x is its coordinate,
m is its effective mass in a fixed lattice; V is the crystal
volume; F= —¢E, ¢ is the magnitude of the electronic
charge, E is the applied electric field in the crystal.
As a specific example, we shall later use Frohlich’s
model® of the polaron in which

Ck= (—ﬁwk/k)(h/2mwk)”4(47ra)1/2,

a=(e%/1)(1/en—1/¢s)(m/2hwi)"/?,

wr=1 independent of k, e, is the static dielectric con-
stant of the material, and e, is the optical dielectric
constant.

We now maintain the usual convention of setting
#=1, working with a unit volume, and incorporating e
into E so that —¢E — E.

If we insert the Hamiltonian (7) into (1) and carry
out (2) and (3) we obtain

E=Z k<Rk> ;

where

(8a)

where

Ri=—i(Citarte & *—Crare™ ™). (8b)
The {R,) may be interpreted as the net rate of emission
(rate of emission less rate of absorption) of longitudinal
optical phonons of wave vector k, and k may be inter-
preted as the change of momentum of the electron. E is
just the rate of increase of electron momentum. Equa-
tion (8a) expresses the fact that in steady state this
gain and loss just balance. If we can evaluate (Ry)

7 Here the time-ordered operator notation is used (see Ref. 8):
Unprimed operators to the left and ordered right to left with
increasing time, and primed operators to the right and ordered
left to right with increasing time.

8 R. P. Feynman, Phys. Rev. 84, 108 (1951).

9H. Frohlich, Advances in Physics, edited by N. F. Mott
(Taylor & Francis, Ltd., London, 1954), Vol. 3, p. 325.
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=Tr(p.Ry) as a function of the expectation steady-state
velocity of the electron, we shall obtain a relationship
between the applied field and this velocity.

The problem of integrating Tr(p,) over the crystal
oscillator coordinates has been solved in I and FHIP.
We use this result to determine Tr(p.Ry) in the follow-
ing manner. If we write H, and H, as

H,=p,%/2m—F(s) X+ w.aqla,
q

+3° {Cy[1—78q,x0(s —1) Jaqeis ™
q
+Co*[14v8q,68(s —1) Jagle 5%}

and
Hy' =po2/2m—F'(s") X'+ wqaqlaq
q
+Z {quqeiq"‘S'I+Cq*qu6_iq'xsl,} )
q
then

R 9
Tr(Rips) = G—ETr(m)] | y=0,
Y

where p, is given by (5) and p;,;=exp(—8 Xk Wk ax).
The result is
(Ri)n= / / Rue*Dx)DX), (9a)

where /° /" D(x)D(x’) is the path integral over x and x’
between # and &,

t2 t2
Cbe=/ (%mf{;z‘}-E'Xt)dt—/ (%mfit’z"l—E'X;I)dt
2} 24

t2 t
+iX|Cil? / d‘/ AV [T (i~ ek =2t
k t1 i1

_+_ka* (l __t/)eik - (xg—xtr) ka(t _.,j’)eik- (xt—x¢1')

=Ty (t—1)e - &e=x7 ], (9b)
Tuy(r) =i /(1= Pex) i (ePx=1), (90)
and
ty e‘“’i"’k (tz-t)eik- (xtg—xt)
Ru= |ck12/ dt(
t1 1—ePox
etwk (t2—2) p—ik - (xtg—x2) etwk (ta—t) p—ik . (xgg—x¢)
- -
eﬂwk j— 1 1 — g Buk
e—iwk (tzﬁt)eik- (xtg—x¢’)
— . (9d
efer—1 > o

Relation (9) includes all quantum interferences in
the emission and absorption of phonons, real and virtual,
and represents a substantial simplification of the prob-
lem in that the oscillator coordinates have been elimi-
nated exactly. The expression (9), however, is still
quite complicated, and we know of no exact way to
perform the two-path integrals over the electronic co-
ordinates. Thus we must use an approximate method.
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We point out, moreover, that the only term which gives
us trouble and, therefore, which must be approximated,
is the square bracketed term in the exact action, ®, (9b),
and this involves only the electron-lattice interaction.
Neither the electric field term in this action nor the
Ry term, representing the Hamiltonian, need be altered.
This is crucial, because the most sensitive dependence
between the field and the velocity is governed by Ry.
If, for example, the Hamiltonian is approximated in the
usual way by the dipole approximation, the resulting
Ry (and the new action) can give only the usual linear
theory of field versus velocity. As we shall see in Sec. ITI,
we may evaluate (9) by modifying ®, but not Ry. This
ensures that the basic physical features of the problem
will be maintained.

III. METHOD OF APPROXIMATION
AND THE RESULT

The heart of the problem is how to represent the
interaction of the small system, in which one is usually
interested, with a dissipative system so that the problem
may be treated directly, yet without losing its essential
physical features. Approaching this problem from the
quantum mechanics of Hamiltonians is difficult and
cumbersome. One reason is that is is impossible to
introduce loss into a one-particle Lagrangian or Hamil-
tonian. However, by using the path-integral approach,
in particular the concept of the influence functional,
it is often possible to obtain enough physical insight into
the nature of the dissipation to formulate a solvable
approximation and to use this approximation in a well-
defined manner. Additional accuracy can be obtained
by introducing parameters or functions in the approxi-
mate influence functional which can be determined in-
dependently through a variational principle. Such a
procedure was quite successful in treating the ground-
state energy of the polaron.* However, neither in FHIP
nor in the present paper has a variational principle
emerged for the impedance, in the former study, or for
the field-velocity dependence developed here.

A physically very reasonable approximation for the
influence functional exp(i®,) of Eq. (9) was developed
in I to treat the ground-state energy and in FHIP to
treat the impedance of the polaron. These results in-
dicate that this model yields the essential features of
the physical phenomena expected. The approximation
consists on modifying the eight terms in (9b) of the
exact form

> | Cr| 2exp(—ik- (x/ —x,))eiwrt—t")
k

These assume the approximate form
—_ Ce'iw (t—t") (th —Xt’,) 2 ,
where C is the relative strength and w is the frequency of

the oscillator. The frequency in the thermal factors in

©R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. (N. Y.)
24, 118 (1963).
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(9b) is also changed from wy to w. In I, parameters C
and w were determined so that this oscillator interaction
approximates the effect of ®, as closely as possible in
the sense of yielding a minimum ground-state energy.
[In the Frohlich model this term is (a/V2)eitt—t)/
X |x/—x¢’|, a Coulombic interaction oscillating in time.
However, if in the Frohlich model one accounts for the
discreteness of the ionic lattice by limiting the above
summation over k to |k|<’kmax instead of summing
over all k, for small |x,/—x,’| the interaction is har-
monic, being proportional to (x;/—x")2.]

Our problem is somewhat different from that treated
in I and FHIP, and hence we must modify this approxi-
mation somewhat. In calculating the ground-state
energy* the mean velocity of the electron was zero, and
hence there was no net translation. Here, however, the
electron translates with some finite, expectation steady-
state velocity v in addition to its fluctuations. Thus we
should first transform the integrations in (9) to a
reference frame moving with the electron. Formally
this can be done simply with a change of variables. In
this frame the electron fluctuates about its mean posi-
tion as it does in the ground-state energy calculation.

This change of reference frames leads to another
difference which should be included in the approxima-
tion. As will be seen shortly from Eq. (10c), the change
of variables x,=y,+ V¢, x,/=y/+ V¢ leads to a modifi-
cation of the frequencies wyx — wxE=k-v. Hence, now
one should couple the electron to a distribution of oscil-
lators of various frequencies rather than to a single
oscillator with a single frequency as was done in I and
FHIP. This possibility was indicated in Sec. 7 of FHIP,
and we shall make use of it here.

To carry out the above program we first change
variables as indicated, absorbing constant factors into
the normalization. The result of this is still an exact
expression,!! only now y is the coordinate of the electron
with respect to its mean position in time:

E=Zk//mev@wwm (102)
k

where

t2 t2
o,/ =/ (%mj’t2+E‘Yt)dt—/ (Gmy/*+E-y/)dt
a a

t2 t
+i3 i Ck! 2/ dlf/ dt'[ka(t—t’)e‘ik-(yt’—yw’)
k 29 i1

_f_ka*(t_.t’)eib(yt—yu) —ka(l—t')e"ik'(y"'y"')

—Sut—)et i 5=y, (10b)
eiwk’r e—iw’—-k'r

Sax(r) = + , wx =wx—k-v, (10c)
1—e P efox—1

1 Tn (10b) we have used |C_x|?= |Ck|? and wk=w_ to change
the sign of k in the last two exponentials. These follow quite
generally from the time-reversal symmetry of the physical
phenomena characterizing the interaction and the oscillators.
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and
to etk (ta—t) pik - (Ytg—yt)
R/ = ]Cklzf dz(
i 1—e Pk

etor’ (t2—t) p—ik - (ytg—yt) etuk’ (t2—t) p—ik - (yg—yt’)

eBor —1 1 —¢Bek

e iwk’ (ta—1t) pik- (Yeg—y¢')

- > (10d)

eforx—1

To see how we take advantage of this transformation
and introduce the approximate influence functional,
expand the square-bracketed expression in Eq. (10b) in
powers of k-y. The zeroth-order term vanishes; a first-
order term and all higher odd-order terms enter which
would be absent in the untransformed (or v=0) inte-
grals; all even-order terms above the zeroth enter as
before,*5 except for the altered frequencies (wx — wy')
in the time-dependent phases of the integrand. As
mentioned above, in I and FHIP (where v=0) the spirit
was to simulate the harmonic and all higher-order terms
by a single-harmonic term with frequency and coupling
strength derivable from minimizing the free energy.
Here, besides introducing a distribution of oscillators
to represent the new spectrum of frequencies, we see
that in the v#0 frame the potential is clearly not sym-
metric in the v direction. This suggests using a linear
term of the form

/ Fult)- (yo—ys)de (11)

1

to simulate all of the odd terms of the expansion. Fo(f)
would then also have to be determined from some other
principle. Unfortunately such a term can have no effect
on the result.?

The arguments given above suggest that the dynam-
ical behavior of the electron might be described approxi-
mately if we replace”the exact influence functional by
exp(i®,), where now

t2 0 t2 t
Bo= / Gy —imy2)di—i / a2 G(Q) / dt / a
t 0 t1 21

X[To(t—1)y! —yo' ) +To*t—1)(y:—yr)*
—To(t—1)(yi=ys )2 =To*(t—1)(y/ —y»)*] (12)

2 The coefficient of the first-order term in the expansion of
(10b) is independent of time. This suggests Fo should be independ-
ent of time. If this is the case, then the final result (13) is in fact
found to be sndependent of this constant. Hence nothing is gained
by inserting such a term. One can easily let Fo(¢) be a function of ¢
and carry out the path integrals as in Appendix A without addi-
tional complication. But then one is faced with what such a time
dependent Fo(f) would represent physically in the context of our
problem. Surely such a coefficient must be translationally in-
variant in absolute time as are coefficients of all higher processes,
and only Fo(f)=const satisfies this requirement. (The reason
that the Fo=const case does not lead to additional terms in the
final result is easy to see. A uniform applied field superimposed
on a harmonic potential is just a shifted harmonic potential of
the same strength. This clearly can have no effect on the fluctua-
tions of the electron in its well.)
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and where T'q is as given in (9¢).'® As discussed above,
we have introduced the oscillator distribution G(Q) for
| Cx|? to partially compenstate for the error introduced
by using a parabolic potential in place of the true po-
tential. Making this substitution and using the general
path integral evaluated in Appendix A, we obtain the
explicit relation shown between the applied electric field
E in the lattice and the expectation, steady-state velo-
city v of the electron.

et(or—k.-v)§

E=/w ds%]ck[2k<-

o 1—eFox

e i(wr—k V)£

>e—k21?s<s> (13a)

ePer—1

- [ aeTicdwna@es e, )
. k

Recalling our basic equation (8a), we may interpret
this result as an expression for the electric field E
needed to balance the net loss of energy per unit dis-
tance (or momentum per unit time) to the polar crystal
to maintain the steady-state translational velocity v of
the electron, whose interaction with the lattice is
characterized by the Cy of (7). In (13) we have set

Ks(8)=Kp(£)—K5(0)
0 1— iwE 1— —iw§
=/ dw[—r(w)]< ST )

1—e b gfo—1

(13¢)

Kg(¢) and I'(w) are introduced and discussed in Ap-
pendix A.

In Sec. IV we_develop a physical feel for (13) by
examining several limiting cases and comparing these
with results obtainable by other means. Then in Sec. V
we shall use the Frohlich polaron model for |Ci|? and
wi and the one-oscillator approximation* for G(Q) to
obtain numerical results. The physics we have main-
tained in our method will then be strikingly apparent.

For the present section let us make several observa-
tions regarding our result (13). There are really two
ways in which E depends on v: The explicit dependence,
which in the phase of the integrand is a very sensitive
dependence, and which we have preserved in its correct
form, and (possibly) an implicit dependence in Kg(£)
which would arise indirectly through the choice for our
result of a best possible distribution of oscillators G(2)

18 At this point the reader should note that we have in using
G(Q)Ta(t—t) in (12) not used the most general approximation
suggested by our expansion of (10b). Such an expression would
be G1(Q) exp[iQ(¢—1t)]+G2(Q) exp[ —iQ2(—¢")] for 0<Q< o,
or simply G'(Q) exp[#Q(F—#)] for —w <Q@<w. Our form as-
sumes that the effective oscillators are not only in thermal equi-
librium but in equilibrium at the initial lattice temperature. We
work out the problem for this more general approximation in
Appendix B. The result may be used to evaluate E versus v if
one wished to use for the distribution of oscillators just that one
given by the quadratic terms of (10b). This would introduce a
velocity dependence into the trial influence functional which is
absent in (12).
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with steady-state velocity.*~'¢ For lack of a better
criterion we will not consider this latter possibility. We
should note, however, that if we change the integration
of £ from Im(§)=0 to Im(£) =38, we obtain a form con-
venient for numerical work,

o cos(wié)
E=/ dt 2| C|Rr———
. k sinh (38wx)

X e~ kv EHBID kRS ) (14a)

where now
Re(9)= / d[-T@)]
’ 1—cos(w§)

nh(38w)+ — — 14)b
X(ta (s} sinh(éﬁw)) 1

and where, in reality, only the real part of e (&+i/2)
enters. In this form the coefficients of 4% in the exponent
is purely real, so that to the extent whereby the phase
of the integrand is the sensitive function of the veloc-
ity v, the dependence of K4 on velocity will be less
important.

Up to this point we have been using applied field, rate
of change of electron momentum, and loss of energy per
unit distance interchangeably. Naturally, we would
expect that as we apply stronger and stronger electric
fields a point is reached, where no steady-state drift
velocity will exist for the electron. Indeed, our result
(13) contains this as we point out in our discussion of
the numerical result for the Frohlich model. How can
we interpret our result for velocity above this threshold,
especially when throughout our discussion we have
imposed the steady-state condition that the expectation
values do not change in time.

Rewriting (2) with the help of (8) but not imposing
the steady-state restriction we have

E—Dp=Y kR,, (15)

k

which, as described in Sec. II, expresses, in the spirit of
the correspondence principles, the balance between the
rate of increase of electron momentum in the applied
field E and the rate of decrease due to scattering by the
crystal and due to inertial acceleration. The steady-
state criterion entered twice in our solution: first in
setting (p)=0, second in the evaluation of (R,). We
shall see that under certain restricted conditions, if E
is interpreted as the rate of momentum lost to the lattice

4 Tf we could find a variational principle for the field-velocity
dependence, we would obtain the best G (Q2) possible for our result
as a function coupling strength, temperature, and velocity.
Using the one-oscillator distribution? and the variational principle
for the free energy, the parameters are found to be relatively
sensitive to coupling strength but insensitive to temperature
(Refs. 15 and 16). We must assume here that the dependence with
velocity is also insensitive.

15y, Osaka, Progr. Theoret. Phys. (Kyoto) 22, 437 (1959).

16 M. A. Krivogloz and S. I. Pekar, Bull. Acad. Sci. USSR 21,
(1957); 21, 13 (1957); 21, 29 (1957).
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in scattering, (13) may be physically meaningful even
when the steady state is not possible.

Qualitatively our result (13) can be divided into two
regions in the velocity v. The function E(v) rises mon-
tonically from zero at v=0 to a threshold Eq, at some
vrh, and then falls montonically to zero for infinite v.
Physically these two situations correspond to what we
shall call the stable and the unstable regions, respec-
tively. For v<<vrs, should the velocity of the electron
increase, the corresponding loss increases above that
which the electron gains from the applied field. Con-
sequently, its velocity must decrease. Similarly, if the
velocity decreases, it will gain from the field more than
it loses to the lattice, and hence its velocity will increase.
In this sense the motion is stable: the electron drifts
with an expectation velocity v, and its average loss of
momentum per unit time, its average loss of energy per
unit distance, to the lattice is just balanced by the
applied field.

For v>wvry, this situation is quite different. First, we
stress that we do not mean £> Er, for this situation.
To be sure, if the field exceeds the threshold for a given
temperature, that is, the maximum rate of loss to the
crystal at that temperature, the steady-state velocity
is no longer meaningful, at least in the manner which we
have used it. For £> Er, the problem is no longer a
steady-state one: the electron accelerates indefinitely
(unless, of course, another mode of energy loss is intro-
duced, such as pair production). Thus, in this paper
our treatment applies only to applied fields below
threshold.

If now the field is below threshold and the velocity
exceeds vy, the loss to the crystal is still given by (13),
assuming a steady-state situation, and this loss can be
compensated by an applied field. This situation, of
course, is unstable. If the velocity decreases, the loss
increases, which further decreases the velocity, etc.,
until a stable steady state is reached at the applied field,
but for the corresponding v <wrp. Thus, while our results
give us the loss for steady-state velocity above thres-
hold, this situation as a steady-state phenomenon is
probably not physically realizable.

An alternative interpretation for v>uvry is apparent
from Eq. (15). If there is no applied field, then determin-
ing the expectation value of (15) would give us a time-
dependent relation for the loss of momentum in time.
If in addition 97<v, where v is the electron velocity and
7 1s a valid “collision time,” then (13) could be used to
obtain the rate of loss of electron momentum to the
crystal. And if there is appreciable persistence of the
initial momentum, a rather unlikely situation except in
the limit of very fast particles, (13) can provide the
rate of loss of energy with distance. For example, while
it can be hard to calculate loss in a transient situation,
here we visualize applying a field which just compen-
states the loss, and we perform the somewhat easier
steady-state solution to determine this loss.
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This leads to an interesting situation. Suppose we
apply an electric field E,<Ery, to the crystal and then
somehow inject electrons with velocity v;>v,. Given
Ey< Ery,, (13) is satisfied for fwo values of velocities
90 and v; and 99<vp,<v;. If now »,>w;, the electron
will lose less energy per unit distance to the crystal than
it can gain from the applied field. In this case the elec-
tron is accelerated until pair production dominates.
If v;<v;, then the electron will lose more energy per
unit distance to the lattice than it gains from the
applied field. In this latter case the electron will de-
celerate until steady state is reached for »=w,. This
essentially serves the function of a particle detector for
velocity.

IV. COMPARISON WITH OTHER RESULTS

To obtain additional insight into our relation (13)
we turn to three special limiting cases: the weak cou-
pling limit, the small-field, small-velocity limit, and the
low-frequency limit (of the impedance).

A. Weak Coupling Limit

Let us briefly consider the special case of the electron
in the crystal lattice under the hypothesis that the
interaction is so weak that we may consider the col-
lisions with optical phonons to occur essentially inde-
pendently; that is, sufficiently separated in time so that
the quantum interferences between these collisions are
negligible. Under these conditions Kg(£) in (13) as-
sumes its free-particle value!” of (—i&+£2/8)/2m.

This result may be obtained more simply as follows.
The above weak coupling criterion permits us to use
Fermi’s Golden rule to calculate the transition rate
between free-electron states | p) and | ) due to scatter-
ing with optical phonons. If we average over a thermal
distribution of phonons, then the rate to pass from |p)
to | p’) by phonon absorption is simply

27| Cx|28(—k2/2m—p-k/m—+wy)/(efx—1), (16a)
where k=p’—p, and that by phonon emission is

27| Cic| 26(—k2/2m~+p-K/m—wy) /(1 —eBex)

6(x)=< /_ i e“”fd$> / 2,

and equating the electric field, or gain of momentum
per unit time, to the loss of momentum per unit time
to the lattice as given by these rates, we obtain the

(16b)

Writing

17 Reference 4, p. 664; Ref. 5, p. 1012. In the weak coupling limit
and for a single-oscillator model, the free energy is a minimum for
wo=1, vo=1. The choice gives what we call the free-particle
Kp(%). The trial oscillator has the frequency of the lattice and is
not coupled to the electron. I'(w) =8’ (w)/m in our notation here.
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where the zero-order distribution for the electrons is
taken as a drifted Maxwellian whose mean velocity is
equal to the steady-state velocity v. This is just our
result (13) with Kg(£) replaced by its free-particle
value.!” As the coupling is increased, the importance of
higher-order scattering is represented in our result by
K5(¢), departing 51gn1ﬁcantly from this free-particle
value. One effect of this is to enhance the apparent
mass of the electron.*

It should be emphasized that this weak coupling
limit of our result does nof agree with the mobility
obtained from standard Boltzmann treatments applica-
ble for sufficiently low temperature.'® It differs slightly
in its temperature dependence as discussed in FHIP
(p. 1014 and Sec. VI). Based on the method used here
to obtain our relation (13), the explanation for this
difference given in FHIP no longer applies. At present
we do not understand this disagreement.

B. Small Static Field (Low-Velocity) Limit

The drift of electrons in a polar crystal in a very
small; static, electric field can be treated in a manner
closely paralleling the treatment in FHIP for arbitrary
couplmg and temperature.? The result of such a calcu-
lation is

E=/°° At 2| Cre|k(—itk-v) Tuy(§e HFs® . (18)

If we take the low-velocity limit of our result (13), we
obtain just this result. This is important because there
is no a priori reason why the approximate method of
summing the expansion used in FHIP should be equiv-
alent to the method of rates used here. This equivalence
is also brought out by using this method of rates to
derive the general result for the (ac) impedance of
FHIP. This calculation is outlined in Sec. IV C below.

C. Low-Frequency Limit of Impedance

Another check on our result is to find the zero-
frequency limit of the real part of the impedance calcu-
lated in FHIP [Eq. (41)]. This limit gives the electronic
mobility for arbitrary coupling and temperature, and
agrees with the low-velocity limit of our result (13). As
was stressed in FHIP, careful attention had to be given

18 A novel Boltzmann treatment for arbitrary coupling has been
carried out by L. P. Kadanoff, Phys. Rev. 130, 1364 (1963)
Again his result and our result (24) differ by the same factor 28.
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to this limit because the approach used to sum the
expansion of the admittance was subject to question
for zero frequency. Their result, however, is not subject
to question at zero frequency: it can be derived using
our approach which avoids the zero-frequency problem.
We outline this briefly.

To determine the impedance of the electron in the
polar crystal, we may write the expectation value of
(15) after steady state is reached (in this case after the
transients have decayed) as

(—iw)Z Je~ " tfwiTe ot =" k<Rk>t, (19)
k

where Z,, is the impedance defined by Zé=E, & is the
(complex) amplitude of the vibration, and e~%* is the
time dependence of the oscillation of frequency o
[FHIP use exp(ivt)]. Perform the (R,), as in Sec. II,
making the change of variables x,=vy,4Ze¢~%*! in the
path integral and expand this result for Z small.'® The
result is

inw=w2—/w dé(1—e®8) Im[S(®)],  (20a)

where

S =2 [Cr|* 3BT u(§)e#*Fs® (20b)
k

is identical to the final result of FHIP for all frequencies.

The physical features of this result were discussed in
great detail in FHIP. In particular, it was possible to
show how the expression for the dissipation at low
temperature could be written to show explicitly how the
absorption and emission of both phonons and photons
from the fields were represented complete with cross
sections for these processes. It is difficult, however, to
represent the essentially continuous change of state
of an electron in a static electric field by the emission
and absorption of photons. Thus in describing our result
it was convenient to go back to the classical idea of
balancing rates of momentum gain with loss.

V. NUMERICAL RESULTS FOR FROHLICH
POLARON MODEL

Physically we would expect that as the steady-state
velocity of the electron increases so that its kinetic
energy approaches the energy of the optical phonons,
the emission of optical phonons will become dominant
and the velocity will tend to saturate with increasing
field. As the velocity exceeds this threshold, the loss to
the lattice should diminish with increasing velocity, as
we would expect from a perturbation treatment for a
very fast electron. For 8> 1, the loss should be essen-
tially independent of temperature above threshold: It
goes as cothB. As the temperature is increased above the
optical-phonon energy, scattering from thermal pho-
nons will tend to suppress these features and increase

19 If we use £/ (—iw) in place of Z, then the limit w — 0 is easily
seen to cause no difficulty.
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the threshold field and threshold velocity. Our numeri-
cal results (Figs. 1-3) show these effects nicely. Numer-
ical results for the weak coupling limit have been given
by Stratton.?

We now evaluate our result (13) numerically using
the Frohlich? model of the polaron for |Ci|? and w;, and
the single-oscillator influence functional*® for coupling
strengths of =3, 5, 7, and for reciprocal temperatures
B between 20 and 0.001. In our units 8 is the ratio of the
energy of the longitudinal optical mode to the average
thermal energy of the lattice 27. Typical longitudinal
reststrahlen energies range between about one-third
room temperature and six times room temperature.?!

For numerical work it is convenient to use the form
of our result given in (14) with m=1. For the Feynman
model, K'(£) becomes

_, 1 we?[ /10 —w¢?
Rio=-= ()
2 9¢? Wo20g

cosh(38ve) —cosveé &2

+—+%} 1)
B8

sinh(38v0)

where wo, vo are determined by minimizing the free
energy at zero temperature.* The values used here are
99=3.4, wo=2.5 for a=3; 19=4.0, wy=2.1 for a=35;
29=35.8, wo=1.6 for a=7 (FHIP, p. 1012).22 Performing
those integrals which can be evaluated analytically we

obtain
4o v(VB)vo/wo
E=——r— / x%dx
v*Br!/? sinh(38) Jo
©  cos(3Bs) s2—1
X §———— exp( — 2 )

o [A@)T"? 24(s)
X [cos(x?s/A(s))—s sin(x?s/A(s)) ],
4 vg?—we? cosh(3Bvo) —cos(3s0v8)

A(s)=s24+14- . (22b)

B8 woo sinh($8v,)

(22a)
where

The magnitude of 8 limits the velocities for which these
expressions can be integrated using Simpson’s rule on
an IBM 7094 computer. For small 8 it is possible to
integrate beyond the velocity threshold, for 3> 10 the
threshold can only be approached due to the violent
sinusoidal oscillation. To complete the curves it was

2 R. Stratton, Proc. Roy. Soc. (London) A246, 406 (1958).

2 The longitudinal reststrahlen 7wy, can be determined from the
experimentally measured transverse reststrahlen (%wr) frequency
using wr/wr= (€/€0)?, Where e is the static dielectric constant
and e, is the electronic contribution to the dielectric constant.
It can alternately be found as in Ref. 23.

22 While one would expect these values to be valid only for large
B (low temperature), we use them for all temperatures. In fact,
for high temperatures the £—v relation no longer depends sig-
nificantly on wo, v. This may be seen by expanding 4 (&) (22b)
for small B: A4 (s)= (v¥/we®) (s2+1), and setting z= (wo/vo)x In
(22a). Therefore we expect the numerical results to be about as
good as would be obtained if different vo, wo were inserted at each
temperature.
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F1G. 1. The energy loss per unit distance £’ (vertical axis suffered by an electron whose steady-state velocity’is o’ (horizontal axis)
for a coupling constant of a=3 and oscillator parameters w=2.5, v=3.4.

necessary to return to (21) and expand K'(£) to second
order in £. This is justified for large 8, where the cosvof
dependence is unimportant, and for small 8, where
most of the contribution to the /d¢ of (14) comes for
£ZB. Thus writing Kg'(£)= (1/28)(A£+B) and per-
forming the /'d¢, first we obtain

a /B 1/2 1 v[VA
Y e
202\ sinh(38) Jo

>k Bk%r4B
X/ dk— exp|:— ~——<— ——A):|
| ] 84\ 2

X (eB126~ (B12) (= kI2=1IBY | g=Bl2g=BI2G—kI2H1II?) | (23a)

where
A =141 —we?/ve®){ve8/[2 sinh(328) ]—1} (23b)

and
‘WQZ '1)02/‘7,002— 1
B= —(——%

7)02

tanh&avo>+i—ﬁ>. (23¢)

0

These integrals are sufficiently well-behaved that they
can be easily handled numerically. For the low-field
mobility we obtain

1 ( 1 B8 1 (ﬁ ”2K 18V0), (24)
P sz)sinh(;s) V/C 1r) {#V0,
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F16. 2. The energy loss per unit distance E’ (vertical axis) suffered by an electron whose steady-state velocity is o’ (horizontal axis)
for a coupling constant of =35 and oscillator parameters w=2.1, v=4.0.

where C=4B/AB? and K; is the modified Bessel func-
tion of order 1. For sufficiently large velocity the rate
of momentum loss becomes 2(V2a/%?) Inv, the rate of
energy loss 2(V2a/v)Inv, the result of perturbation
theory. '

If we compare the curves for «=3, 5, and 7, we note
that apart from an over-all increase in loss due to in-
creased coupling, the threshold region shifts to lower
electron velocity. (The vertical line corresponds to the
velocity where $mv2=%w;, or in our units v=v2.) This
shift is a manifestation of the increase in the effective
mass of the electron resulting from the electron-lattice

coupling as discussed in I. This shift is most clearly
evident in (23a) for low temperatures: 1/4 — wo/v0
and 368(4B/AB2—1) — (vo®/we?—1)/vo. While the latter
term narrows the threshold region for increasing cou-
pling, the former contracts the velocity scale v — vo/wp.
Thus near threshold Em(vve/wo)2=%wy, or %(mve?/we?)v?
=wz, and me%/w,? is very nearly the effective electron
mass (FHIP, p. 1008).

For convenience, the scales of the graphs have been
changed from the E, v that we have used in our equations
to E, ¢, where E'=E(m,)'*/h=E/2.75 and o
=1v/(m,)1/2=9X0.418 X10'. To obtain F the force on
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F1G. 3. The energy loss per unit distance E’ (vertical axis) suffered by an electron whose steady-state velocity is o’ (horizontal axis)
for a coupling constant of a=7 and for oscillator parameters w=1.6, v=35.8.

the electron in eV/A and v, the velocity in A/sec one
uses
F=(m/m)*(hor)**E'  (eV/A), (25a)

v,=(mo/m) 2 (hwp) 2’ (A/sec), (25b)

where . is the rest mass of the electron, # is its fixed-
lattice effective mass, and #w; is the energy of the
longitudinal optical phonons in eV. We see that to calcu-
late the coupling constant « in the Frohlich model all
we need apart from m are three experimentally deter-
mined quantities—the static and optical dielectric
constants and the reststrahlen frequency.

To obtain a feel for the magnitude of the energy loss
to a lattice which we would predict based on the above,
let us consider the specific example of Al,O;. The optical-
phonon structure?® of Al,O; is a good deal more com-
plicated than can be described with the Frohlich model:
The strongest contributions to the dielectric dispersion
correspond to modes whose longitudinal frequencies
(energies) are 0.060, 0.064, and 0.078 eV. Let us take
0.07 eV as an average #iwr, €,=3.1, and €,=9.0 and
unit effective mass. These values give a=2.7, and the
low-temperature (temperature-independent) threshold

3 A, S. Barker, Jr., Phys. Rev. 132, 1474 (1963).
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(E'=1.5 for a=3, 2.8 for =35, and 5.8 for a=7) is
F=0.025 eV/A. (We have reduced the a=3 value by
the factor 2.7/3.0: the v, and w, change by a much
smaller percentage for these a.) If the reststrahlen of
0.12 eV which Handy! uses is more appropriate, this
would give F=0.043 eV/A. The extent to which these
results are directly applicable to the Al,O; films on
which losses of about 0.03 eV/A have been measured
may not be too clear: The films may be polycrystalline
or amorphous, the band structure may not permit the
unit mass assumption we have assumed here, the elec-
tron’s velocity in the crystal is uncertain, etc. The
point is that optical-phonon scattering can indeed pro-
duce the high rate of energy loss that seems to be
present in these layers.

VI. FURTHER REMARKS

In the spirit of our method of rates, Sec. II, one can
also evaluate the operator equation for the rate of
change of electron kinetic energy:

d
;l(p2/ 2m)=i[H, p*/2m]

=(F'P+P~F)/2m—§ R, (20)

where
R/'=—i{C\*ar'k-[e™*p ],
—Crak-[e™*p],}.

Taking the expectation value of this expression, in-
voking the steady-state limit, recalling that F is inde-
pendent of distance, and using the notational change
indicated following Eq. (7), one finds

E-v=3(R/).

@7

(28)

In the steady state, (28) expressed simply the balance
of the rate at which energy is acquired from the ap-
plied field and the rate at which energy is lost to the
lattice.

A more transparent and useful expression for this rela-
tion of energy transfer can be obtained from

H=i[H,H]=0, (29)

which, when expectation values are calculated and the
steady-state limit is taken, yields

d
E-v=—C wiartar) (30a)
dt x

=¥ wi(Rx), (30Db)

where Ry is given by (8b). (In the steady state neither
the electron kinetic energy nor the electron-lattice inter-
action energy changes with time.) Since Ry is the opera-
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tor for the net rate of emission of optical phonons
(emission less absorption), (30b) is seen at once to
express the balance between the rate of gain and the
rate of loss of electron energy from the field and to
the lattice, respectively. Eliminating the lattice vari-
ables as in Sec. II and approximating the expression as
in Sec. IIT gives the field-velocity relation

ei(wk—kw)f

E«v=/ ngiCkl%k(—
e ®

1—eFox

e--i(wk—k~v)£

e RRs® (31
efor—1 ) G

This result agrees with (13) only when Kg(£) is inde-
pendent of £.

As a test of the consistency of our approach, this
disagreement is unfortunate. For 8<2, E<Ery, 9<¥Ts
(Th represents threshold), the discrepancy is not serious.
For higher temperatures, (31) goes sour: For example,
the low-field mobility tends to increase again with
increasing temperature whereas it sould continue to
decrease. The fact that (13) was obtained in two
independent ways, and that it is qualitatively correct
physically for all temperatures, velocities, and field
strengths leads us to discount but not forget the trouble
with (31).

[One could, of course, permit the electron (or effective
oscillator) “temperature” in (12) to differ from the
lattice temperature in (10d) and solve both (13) and
(31) for E and this electron temperature self-consis-
tently. This is analogous to the drifted-Maxwellian
approximation.? We did not pursue this possibility. ]

There are several important qualitative features of
the behavior of the electron apparent from Figs. 1-3
which should be mentioned. First, even for very low
temperatures (large 8) there is a range of velocities near
v over which the electron-lattice scattering is so
severe that, as discussed in Sec. I, a quasiparticle picture
of the electron is not possible. The lifetime is so short
and catastrophic that the electronic state cannot be
viewed as decaying exponentially in time. (In fact, the
broadening is roughly two orders of magnitude larger
than the energy.) Mott pointed out to us that under
such conditions electrons and holes in this energy region
in highly ionic materials would behave quite differently
than a rigid-lattice band-theory calculation would
predict, and, as we have just noted, a quasiparticle
approximation will not remedy this difficulty. Fortu-
nately ALO; is an extreme case, and even for most
alkali halides the troublesome region is confined to a
few tenths of an eV.

However, the scattering is not sufficiently strong that
the electron never breaks out of the polaron state. As
pointed out to us by P. M. Platzman, the electron has a
finite apparent “mass” for all velocities. (Near vy the
large apparent mass is dominated by resistive losses
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rather than lossless reactive coupling typical of quasi-
particles.)

At very low velocities and at very high velocities,
where a quasiparticle picture is valid, we expect that
the mass appropriate for Eq. (7) is a fixed lattice mass
characteristic of the band electrons at the appropriate
energy. More complicated band structures may be
simulated by more complicated kinetic-energy expres-
sions. However, near the threshold region where the
electron—optical-phonon interaction clearly dominates
all other interactions and the electron is well-localized
due to the magnitude of the scattering, it seems best to
use the free-electron mass in (7) as we have done in
Sec. V. Of course, if the electron—optical-phonon cou-
pling is sufficiently small, the quasiparticle picture and a
band mass may be used for all velocities.

In connection with the quasiparticle picture, one
other clarification is necessary. An electron whose
energy is less than the threshold for phonon emission
cannot emit a phonon. Hence, at zero temperature and
in the absence of an applied electric field, such an elec-
tron with its cloud of phonons forms an eigenstate of
the system—a quasiparticle with infinite lifetime and an
E(k) self-energy relation.?* Such a description may be
useful in the presence of a very small applied field. How-
ever, for the strong fields of interest here, where the
magnitude of the gain and loss of energy is important,
the mixing of such particle states in the field makes
these an inconvenient basis to work with. This is most
clearly seen by noting that the motion of a particle
whose expectation velocity is below threshold but above
the linear mobility region is clearly dominated by pho-
non emission. [In fact, for $>2 and with increasing
velocity, the electron quickly passes from the tempera-
ture-dependent, phonon-absorption dominated, linear
field-velocity (mobility) regime to the temperature-
independent, phonon-emission dominated, nonlinear
field-velocity regime.] In this transition region from
absorption to emission dominated transport, the electron
is simultaneously (a) rapidly acquiring translational
kinetic energy from the applied field, (b) having this
energy transformed into the thermal, kinetic energy of
the electron’s relative motion and into the electron-
lattice interaction energy, and (c) finally dissipating
this energy to the lattice via phonon emission. Hence in
a quasiparticle picture, the state of interest in this
regime is some complicated combination of continuum
states (with finite lifetime) which has an expectation
velocity below threshold, and not a single quasiparticle
state with a momentum corresponding to this velocity.
This precludes a simple treatment or interpretation in
terms of diagrams and illustrates the convenience in-
dicated in the introduction of treating the problem as
a single unit without separately treating the zero-field
electron state, phonon emission and absorption, and
the influence of the field.

2 G. Whitfield and R. Puff, Phys. Rev. 139, A338 (1965).
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VII. CONCLUSIONS

In this paper we have treated the motion of an elec-
tron in a polarizable crystal under the influence of a
static electric field. Starting with the crystal in thermo-
dynamic equilibrium, the electron was injected and an
approximate expression for its subsequent steady-state
drift velocity was determined for arbitrary coupling
strength, temperature, and applied field using path
integral methods. The approximation is based on finding
the distribution of oscillators which would give the
best agreement between the exact field-velocity de-
pendence and our result (13). We have not found a
principle to give this distribution but have reason to
believe such a principle exists. In lieu of this, we have
used the one-oscillator distribution of I which mini-
mizes the free energy at zero temperature. As we have
seen, this is sufficient to represent all the expected
physical behavior between the velocity and rate of loss
of momentum, and, where appropriate, the energy loss
per unit distance. The numerical results obtained are
physically reasonable in view of existing experimental
results. They predict the large applied fields necessary
to pull the electron out of the polaron state.

In I and FHIP a correction term was also evaluated
when the influence function e®s was approximated by
e*®, That is,

/‘/eiég://ei@oei(@g—@o)xf/eidm
o f [io-aie.

Evaluating the second term was not necessary here be-
cause the rate Eq. (8) already contained the electron-
lattice interaction in a convenient from. One might be
able to improve the accuracy of our result by including
the term Ri(®,—®)ei® in the calculation of (Ry).
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APPENDIX A: CALCULATION OF
PATH INTEGRAL

In this Appendix we outline the calculation of

/ f P30y ()], (A1)

where

C—I50=<I>o+/ [(F@)-y.~F'(1)-y/Jdt

and where ® is given by Eq. (12). In order to avoid the
usual problems which arise in performing path integrals
over finite intervals with complex exponents (especially
the presence of undamped transitents), we change the
limits of the time integrals from /2 to J_*, while at
the same time changing F(¢) and F'(¢) appropriately to
ensure that physically we are still working with the
same problem. To facilitate this transition, we recall
that the path integral may be interpreted as a kernel or
propagator.?® Thus if in F(f) and F'(¢) we represent the
E field to be turned on at ¢={; from a zero value for
t<t;, the propagation from {~ —o to {=+# will result
in zero displacement of the electron. Similarly, the fields
may be turned off at {=#,. Clearly, this applies also to
the k “field” in Ry’ (10d). Because we will use a number
of different F(¢) and F'(¢), we consider general F and
F’ here.
Thus we must evaluate

/ [ ¢ DLy() DY ()], A2)

0 0

dv
X= h(%?’ﬂl/2§, . E~v+fu' E—v) -

w0 2T w0 2T

K. K. THORNBER AND R. P, FEYNMAN 1

where

5=/ dGmy P F Q) -y)— / AGmy+F Q)3

—0

—i/m dSZG(Q)/°o dt/ d{Ta(t—1)(y! —yu")?

FTo*(t—1")(§:—ye)*—Tolt—1)(yi—yu')*
—To*—=1)y/ =y,

First expressx, X', F, and F’ by their Fourier transforms:

(A3)

0 ) 0 dV .
Ey =/ y:e+1'”dt , Yt =/ __Eve—wt R
o o 2
0 ] 0 dV .
EV’ :/ yt’e'l-wtdt s Yt, =/ _Ev’e—wt ,
—0 —0 27['
(A4)
f,= / F()ettds, F()= —f, e,
—c0 —p 4T
0 o0 v
f/= / F()etvtds, F{)= —f, e,
— w2
Inserting these in (A3) gives for (A2)
[ [exp@ne, ®

where

dv
2—(%””}2{”, : E—w"‘l‘fy, ° E—)‘/)

i * dy 1 v 1 v
+2 / G()dQ / ~[§/- z_/( - >
0 2T 1—e P2 Q(Q+v+ie)  €f2—1 Q(Q+v—ie)

1 v 1

—&- §~v<1_eﬁﬁﬂ Qv —ie) - ef—1 Q(Q+v-+ie)

v 6(9"—1))
) —2mi,/ - E_,,<

1—e 80

n 6(9—»))} (A6)

efe—1

We note that since x,, x,/, F({), F'(¢) are real, §,=8.%, &'=¢.,* f,=f * f ,*=1f,'. Thus by changing /" .® d» to

Jo®dv, we obtain for (A2)

/ / e X' D(£)D(E*)D(E)D(E), »>0

where

(AT)

© dy
X= ,/ —{[Z10)+22(0) & &F —[Z1* () +22* ()& - &+ [22*() —Z2()]8' - &*
0 ys
+ [Zl*(v) _ZI(V):[ Ev/* M Ev+fv * Eu*_l—fv* : Eu '—fv, . Evl* _'fv/* ° Ev,} (AS)

2

and

Z1(v) =1mp2+2 / aQ
1
0

% R, P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

G(Q) 202

— B QP —y2—ie)

(A9a)
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®  G(Q 202
Zz(V)=%WLV2—2/ a @ (A9b)

o PIQR—yie)

These are defined only for »>0. In 1/Q, the principal value is to be understood.

We are now permitted to regard & and &* independently for the following reason. The Fourier transform of
x, has a real part a, (even in ») and an imaginary part b, (odd in »). To integrate x(f) over all possible paths is equiv-
alent to integrating a, and b, independently over all possible values, but only for those »>0. And as & and &*
are simply linear combinations of a, and b,, they are to be integrated independently. Hence, performing the integrals

in (A7), we obtain for (A2)

© dvy £ (£’ —f£,)
exp|:i / ——( -+
o 2x\Zy(»)+Z1*()

Letting Z(v) =Z1(v)+Z5*(v), we find

and (A2) becomes

BEF 1) (1) (£ —2170)] ]
+ ) . (A10)
Z3*w)+21(v)  [Z20)+Z:* )2 () +2Z1()]
0 G V2
Z(v)=mv2+4/ dﬂﬂ— »>0 (A11)
0 Q 92—112—1.6
[P dvfr 1) 8@ 1Y) L) & —£)[Z* ) —Z()]
eXp[l/O ( 70 T 20 Z0)Z* () (1—e) )] (A12)

2

Returning to (A4) we replace f, and f,’ by their integral
representations to obtain finally for (A2)

expl: /_ Z dt [ ; d'[F()—F' ()]

x[F(z')Kﬂ*a—z')—F'(t')Kpa—z')J}, (AL3)

where

— T

00 eiur
Kﬁ(7)=/ av F(v)( +

1—e

= 2%(2;) - z*l(y)> '

To use (A13) to evaluate say the first term in (10a),
onelets F(n) =k[6(t,—n) —8(¢t—n) ] and F’'(n) =0, which
reproduces this term in (A2), and then evaluates (A13).
Many other examples of this useful trick may be found
in FHIP.

The careful reader will note that several terms have
been omitted from (A13). These terms are

) (A14)

e —1
and

(A15)

]w dt/ diTFQF{E)—F' (OF (¢')]

a1 1
X/ _[ eiﬂ (t—l')_l_ __e~iv (tvt’)AJ ,
o 2miLZ(v) AL

which would otherwise appear in the argument of the
exponential of (A13), except for the fact that

* dv[ 1 1
44([—1/)2/ ~,_l: e (—t') | e~ip(t~t'):l
o 2wiLZ(v) Z*@v)

must equal zero. This may be seen in several ways:

(1) One may calculate (x?) by calculating (x,,%) or
(X¢,-X4,) or (X4,'%) using the above-mentioned trick. The
result, of course, must be the same in either case, but
the contribution of this extra term A4 is 424 if (%,2)
is used, zero if (x,,-x,,’) is used, and —24 if (x;,'2) is
used.

(2) This contribution to purely real quantities is also
purely imaginary.

(3) Since »>0, Z(») of (A11) may be written equiv-
alently as

G(Q)

] * (v+ie)?
Z(v) =m(v+1e)2+4/ asd—

Q @—(+ie?

This tells us that in the Jo® dv/Z(v) we are to integrate
just above the cut in Z(») along the positive real axis
and in fg® dv/Z*({), just below this cut. Furthermore,
Z(v) behaves as an impedence, and therefore by
causality it can have no zeroes (or other troublesome
singularities) in the upper half-plane, likewise Z*(v) in
the lower half-plane. Recalling #—#>0, one shifts the
contour to the positive imaginary axis for the 1/Z(»)
part of the integral and to the negative imaginary axis
for the 1/Z*(v) part. These then cancel identically.

APPENDIX B: FURTHER CALCULATIONS

In this Appendix we evaluate

/ / " D(y)D(y!),

(B1)
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where

(p:/ i smy+F()y]— / atmy*+F Oy ]

—1/ dQGy’(SZ)/ dt/ AT (y, —y,')?

eI (y,— 1y, )2 — g2 (y, —y )2
—e0-1(y/ ~y,)7]. (B2)

We now proceed as in Appendix A. In fact, there is
little point to repeat those steps here. The important
difference in evaluating (B1) is to split the range of
integration of @ into two regions, —o <Q<0 and
0<Q< o, when defining quantities analogous to Z3
and Z; in (A9a) and (A9b). One then obtains for (B1)
the expression

exp( [ : dt /_ ; di'[F(t)—F'(t)]

X[F(l’)L*(t—t’)—F’(t’)L(t—t’)]), (B3)
where
dv Z+*(V)"Z+(V)
= / 2m< Z0)Z*0)
Z3w)=2-()
ZWZ*©)
2dQ  G,/(Q)
0 Q (R—ie2—r?
042 G,/(Q)

e ’) (B4)
and where

Z(v) =3mv>+40?

Z_ 2—}—4/ —_,
C)=dm ’ e  (Q—ie)2—»?

Z(r) =23 () +Z ()
1

(V+¢€)2

* dQ
=m(v—l—ie)2+4(v+ie)2/ EG L (Q )——
for »>0. -
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Having this result we can, for example, calculate
L(7), and hence any path integral for the quadratic
approximation obtained directly from the quadratic
terms of (9b). One must be very careful here, however,
to note that the Z’s will be different in the direction
parallel and perpendicular to the drift velocity. This is
easily incorporated here. Equation (B1) was calculated
above for one dimension. Products of the solution for
the other two directions give the three-dimensional
result. Thus, for the £ direction

[2— (wx—k V)]
1—ePox

§E9+(wk—k-v)]>

ePer—1

/(@)= gckwm(

G,/ (Q) and G,/(Q) are found similarly, the only difference
bemg that &,? is replaced by %,* and %.% respectively.
Finally, it should be noted that

[Z*(0) =2, () ]o= —4irG/ (v), r>0
[Z*()—Z_(») .= —4miGS/ (—v), »2>0
[Z*() —=Z () Jo= —4mi[ G,/ () =G/ ()], »=0
and
1 ( 1 1 1
7z¢ \z 5)2* z
and
P 1
692— (V—I—u?
1 P 1/2 1/2
= N ("" - + . + . ) ]
(v+1e)? Q Q—@+ie) Qt(v+ie)

which in actual practice simplify matters greatly.



